This paper proposes the use of an event camera as a component of a vision system that enables counting of fast-moving objects - in this case, falling corn grains. These type of cameras transmit information about the change in brightness of individual pixels and are characterised by low latency, no motion blur, correct operation in different lighting conditions, as well as very low power consumption. The proposed counting algorithm processes events in real time. The operation of the solution was demonstrated on a stand consisting of a chute with a vibrating feeder, which allowed the number of grains falling to be adjusted. The objective of the control system with a PID controller was to maintain a constant average number of falling objects. The proposed solution was subjected to a series of tests to determine the correctness of the developed method operation. On their basis, the validity of using an event camera to count small, fast-moving objects and the associated wide range of potential industrial applications can be confirmed.
translated by 谷歌翻译
神经形态视觉是一个快速增长的领域,在自动驾驶汽车的感知系统中有许多应用。不幸的是,由于传感器的工作原理,事件流中有很大的噪声。在本文中,我们提出了一种基于IIR滤波器矩阵的新算法,用于过滤此类噪声和硬件体系结构,该算法允许使用SOC FPGA加速。我们的方法具有非常好的过滤效率,无法相关噪声 - 删除了超过99%的嘈杂事件。已经对几个事件数据集进行了测试,并增加了随机噪声。我们设计了硬件体系结构,以减少FPGA内部BRAM资源的利用。这使得每秒的潜伏期非常低,最多可达3858元MERP的事件。在模拟和Xilinx Zynx Zynx Ultrascale+ MPSOC+ MPSOC芯片上,拟议的硬件体系结构在Mercury+ XU9模块上进行了验证。
translated by 谷歌翻译
Audio DeepFakes are artificially generated utterances created using deep learning methods with the main aim to fool the listeners, most of such audio is highly convincing. Their quality is sufficient to pose a serious threat in terms of security and privacy, such as the reliability of news or defamation. To prevent the threats, multiple neural networks-based methods to detect generated speech have been proposed. In this work, we cover the topic of adversarial attacks, which decrease the performance of detectors by adding superficial (difficult to spot by a human) changes to input data. Our contribution contains evaluating the robustness of 3 detection architectures against adversarial attacks in two scenarios (white-box and using transferability mechanism) and enhancing it later by the use of adversarial training performed by our novel adaptive training method.
translated by 谷歌翻译
In this paper, we present a modified Xception architecture, the NEXcepTion network. Our network has significantly better performance than the original Xception, achieving top-1 accuracy of 81.5% on the ImageNet validation dataset (an improvement of 2.5%) as well as a 28% higher throughput. Another variant of our model, NEXcepTion-TP, reaches 81.8% top-1 accuracy, similar to ConvNeXt (82.1%), while having a 27% higher throughput. Our model is the result of applying improved training procedures and new design decisions combined with an application of Neural Architecture Search (NAS) on a smaller dataset. These findings call for revisiting older architectures and reassessing their potential when combined with the latest enhancements.
translated by 谷歌翻译
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models. In this work, we explore how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle. We use this dataset to quantify the effectiveness of synthetic augmentation using U-net and Double-U-net models. We found that, for this domain, synthetic images were an effective technique for augmenting limited sets of real training data. We observed that models trained on purely synthetic images had a very low mean prediction IoU on real validation images. We also observed that adding even very small amounts of real images to a synthetic dataset greatly improved accuracy, and that models trained on datasets augmented with synthetic images were more accurate than those trained on real images alone. Finally, we found that in use cases that benefit from incremental training or model specialization, pretraining a base model on synthetic images provided a sizeable reduction in the training cost of transfer learning, allowing up to 90\% of the model training to be front-loaded.
translated by 谷歌翻译
The proliferation of deep learning techniques led to a wide range of advanced analytics applications in important business areas such as predictive maintenance or product recommendation. However, as the effectiveness of advanced analytics naturally depends on the availability of sufficient data, an organization's ability to exploit the benefits might be restricted by limited data or likewise data access. These challenges could force organizations to spend substantial amounts of money on data, accept constrained analytics capacities, or even turn into a showstopper for analytics projects. Against this backdrop, recent advances in deep learning to generate synthetic data may help to overcome these barriers. Despite its great potential, however, synthetic data are rarely employed. Therefore, we present a taxonomy highlighting the various facets of deploying synthetic data for advanced analytics systems. Furthermore, we identify typical application scenarios for synthetic data to assess the current state of adoption and thereby unveil missed opportunities to pave the way for further research.
translated by 谷歌翻译
We leverage probabilistic models of neural representations to investigate how residual networks fit classes. To this end, we estimate class-conditional density models for representations learned by deep ResNets. We then use these models to characterize distributions of representations across learned classes. Surprisingly, we find that classes in the investigated models are not fitted in an uniform way. On the contrary: we uncover two groups of classes that are fitted with markedly different distributions of representations. These distinct modes of class-fitting are evident only in the deeper layers of the investigated models, indicating that they are not related to low-level image features. We show that the uncovered structure in neural representations correlate with memorization of training examples and adversarial robustness. Finally, we compare class-conditional distributions of neural representations between memorized and typical examples. This allows us to uncover where in the network structure class labels arise for memorized and standard inputs.
translated by 谷歌翻译
Background and Purpose: Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide. Timely detection of cancer in its early stages is essential for treating the disease. Currently, there is a lack of datasets for histopathological image segmentation of rectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis. Methods: This present study provided a new publicly available Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the experimental results for EBHI-Seg are evaluated using classical machine learning methods and deep learning methods. Results: The experimental results showed that deep learning methods had a better image segmentation performance when utilizing EBHI-Seg. The maximum accuracy of the Dice evaluation metric for the classical machine learning method is 0.948, while the Dice evaluation metric for the deep learning method is 0.965. Conclusion: This publicly available dataset contained 5,170 images of six types of tumor differentiation stages and the corresponding ground truth images. The dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients.
translated by 谷歌翻译
Tasks critical to enterprise profitability, such as customer churn prediction, fraudulent account detection or customer lifetime value estimation, are often tackled by models trained on features engineered from customer data in tabular format. Application-specific feature engineering adds development, operationalization and maintenance costs over time. Recent advances in representation learning present an opportunity to simplify and generalize feature engineering across applications. When applying these advancements to tabular data researchers deal with data heterogeneity, variations in customer engagement history or the sheer volume of enterprise datasets. In this paper, we propose a novel approach to encode tabular data containing customer transactions, purchase history and other interactions into a generic representation of a customer's association with the business. We then evaluate these embeddings as features to train multiple models spanning a variety of applications. CASPR, Customer Activity Sequence-based Prediction and Representation, applies Transformer architecture to encode activity sequences to improve model performance and avoid bespoke feature engineering across applications. Our experiments at scale validate CASPR for both small and large enterprise applications.
translated by 谷歌翻译
当植物天然产物与药物共容纳时,就会发生药代动力学天然产物 - 药物相互作用(NPDIS)。了解NPDI的机制是防止不良事件的关键。我们构建了一个知识图框架NP-KG,作为迈向药代动力学NPDIS的计算发现的一步。 NP-KG是一个具有生物医学本体论,链接数据和科学文献的全文,由表型知识翻译框架和语义关系提取系统,SEMREP和集成网络和动态推理组成的构建的科学文献的全文。通过路径搜索和元路径发现对药代动力学绿茶和kratom-prug相互作用的案例研究评估NP-KG,以确定与地面真实数据相比的一致性和矛盾信息。完全集成的NP-KG由745,512个节点和7,249,576个边缘组成。 NP-KG的评估导致了一致(绿茶的38.98%,kratom的50%),矛盾(绿茶的15.25%,21.43%,Kratom的21.43%),同等和矛盾的(15.25%)(21.43%,21.43%,21.43% kratom)信息。几种声称的NPDI的潜在药代动力学机制,包括绿茶 - 茶氧化烯,绿茶 - 纳多洛尔,Kratom-Midazolam,Kratom-Quetiapine和Kratom-Venlafaxine相互作用,与已出版的文献一致。 NP-KG是第一个将生物医学本体论与专注于天然产品的科学文献的全文相结合的公斤。我们证明了NP-KG在鉴定涉及酶,转运蛋白和药物的药代动力学相互作用的应用。我们设想NP-KG将有助于改善人机合作,以指导研究人员将来对药代动力学NPDIS进行研究。 NP-KG框架可在https://doi.org/10.5281/zenodo.6814507和https://github.com/sanyabt/np-kg上公开获得。
translated by 谷歌翻译